写方案网_方案策划方案模板下载

寫方案網(wǎng) > 教學(xué)教案 > 數(shù)學(xué)教案 >

高中教案數(shù)學(xué)

時(shí)間: 新華 數(shù)學(xué)教案

高中教案數(shù)學(xué)篇1

教學(xué)目標(biāo):①掌握對數(shù)函數(shù)的性質(zhì)。

②應(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。

③ 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。

教學(xué)重點(diǎn)與難點(diǎn):對數(shù)函數(shù)的性質(zhì)的應(yīng)用。

教學(xué)過程設(shè)計(jì):

⒈復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。

⒉開始正課

1 比較數(shù)的大小

例 1 比較下列各組數(shù)的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學(xué)們觀察一下⑴中這兩個(gè)對數(shù)有何特征?

生:這兩個(gè)對數(shù)底相等。

師:那么對于兩個(gè)底相等的對數(shù)如何比大小?

生:可構(gòu)造一個(gè)以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數(shù)函數(shù)的單調(diào)性取決于底的大小:當(dāng)0調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞增,所以loga5.1

板書:

解:Ⅰ)當(dāng)0∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9

Ⅱ)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),∵5.1<5.9 ∴l(xiāng)oga5.1

師:請同學(xué)們觀察一下⑵中這三個(gè)對數(shù)有何特征?

生:這三個(gè)對數(shù)底、真數(shù)都不相等。

師:那么對于這三個(gè)對數(shù)如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù)函數(shù)圖象的位置關(guān)系來比大小。

2 函數(shù)的定義域, 值 域及單調(diào)性。

例 2 ⑴求函數(shù)y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求它們共同作用的結(jié)果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。

板書:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個(gè)不等式。

分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零,

再根據(jù)對數(shù)函數(shù)的單調(diào)性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解為:1

例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。

下面請同學(xué)們來解⑴。

生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。

板書:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函數(shù)y=log0.5(x- x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞 增區(qū)間[0.5,1)

注:研究任何函數(shù)的性質(zhì)時(shí),都應(yīng)該首先保證這個(gè)函數(shù)有意義,否則函數(shù)都不存在,性質(zhì)就無從談起。

師:在⑴的基礎(chǔ)上,我們一起來解⑵。請同學(xué)們觀察一下⑴與⑵有什么區(qū)別?

生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。

師:那么⑵如何來解?

生:只要對a進(jìn)行分類討論,做法與⑴類似。

板書:略。

⒊小結(jié)

這堂課主要講解如何應(yīng)用對數(shù)函數(shù)的性質(zhì)解決一些問題,希望能通過這堂課使同學(xué)們對等價(jià)轉(zhuǎn)化、分類討論等思想加以應(yīng)用,提高解題能力。

⒋作業(yè)

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))

⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)

①求它的單調(diào)區(qū)間;②當(dāng)0

⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)

①求它的定義域;②討論它的奇偶性;  ③討論它的單調(diào)性。

⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1),

①求它的定義域;②當(dāng)x為何值時(shí),函數(shù)值大于1;③討論它的單調(diào)性。

5.課堂教學(xué)設(shè)計(jì)說明

這節(jié)課是安排為習(xí)題課,主要利用對數(shù)函數(shù)的性質(zhì)解決一些問題,整個(gè)一堂課分兩個(gè)部分:一 .比較數(shù)的大小,想通過這一部分的練習(xí),培養(yǎng)同學(xué)們構(gòu)造函數(shù)的思想和分類討論、數(shù)形結(jié)合的思想。二.函數(shù)的定義域, 值 域及單調(diào)性,想通過這一部分的練習(xí),能使同學(xué)們重視求函數(shù)的定義域。因?yàn)閷W(xué)生在求函數(shù)的值域和單調(diào)區(qū)間時(shí),往往不考慮函數(shù)的定義域,并且這種錯(cuò)誤很頑固,不易糾正。因此,力求學(xué)生做到想法正確,步驟清晰。為了調(diào)動(dòng)學(xué)生的積極性,突出學(xué)生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學(xué)生獨(dú)立完成。但是,每一道題的解題過程,老師都應(yīng)該給以板書,這樣既讓學(xué)生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結(jié),以使好學(xué)生掌握地更完善,較差的學(xué)生也能夠跟上。

高中教案數(shù)學(xué)篇2

課題:

等比數(shù)列的概念

教學(xué)目標(biāo)

1、通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式、

2、使學(xué)生進(jìn)一步體會類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、

3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)、

教學(xué)用具

投影儀,多媒體軟件,電腦、

教學(xué)方法

討論、談話法、

教學(xué)過程

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)、(幻燈片)

①—2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,—1,1,—1,1,—1,1,—1,…

⑦1,—10,100,—1000,10000,—100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)、

二、講解新課

請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)

這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)

等比數(shù)列(板書)

1、等比數(shù)列的定義(板書)

根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語、

請學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例、而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對等比數(shù)列的認(rèn)識:

2、對定義的認(rèn)識(板書)

(1)等比數(shù)列的首項(xiàng)不為0;

(2)等比數(shù)列的每一項(xiàng)都不為0,即

問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?

(3)公比不為0、

用數(shù)學(xué)式子表示等比數(shù)列的定義、

是等比數(shù)列

①、在這個(gè)式子的寫法上可能會有一些爭議,如寫成

,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為

是等比數(shù)列?為什么不能?式子給出了數(shù)列第項(xiàng)與第

項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式、

3、等比數(shù)列的通項(xiàng)公式(板書)

問題:用和表示第項(xiàng)

①不完全歸納法

②疊乘法,…,,這個(gè)式子相乘得,所以(板書)

(1)等比數(shù)列的通項(xiàng)公式得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識通項(xiàng)公式、(板書)

(2)對公式的認(rèn)識

由學(xué)生來說,最后歸結(jié):

①函數(shù)觀點(diǎn);

②方程思想(因在等差數(shù)列中已有認(rèn)識,此處再復(fù)習(xí)鞏固而已)、

這里強(qiáng)調(diào)方程思想解決問題、方程中有四個(gè)量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。

三、小結(jié)

1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

3、用方程的思想認(rèn)識通項(xiàng)公式,并加以應(yīng)用。

探究活動(dòng)

將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。

參考答案:

30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍热缂埡?、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(對數(shù)算也行)。

高中教案數(shù)學(xué)篇3

一:說教材

平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標(biāo)表示把向量之間的運(yùn)算轉(zhuǎn)化為數(shù)之間的運(yùn)算。本節(jié)內(nèi)容是在平面向量的坐標(biāo)表示以及平面向量的數(shù)量積及其運(yùn)算律的基礎(chǔ)上,介紹了平面向量數(shù)量積的坐標(biāo)表示,平面兩點(diǎn)間的距離公式,和向量垂直的坐標(biāo)表示的充要條件。為解決直線垂直問題,三角形邊角的有關(guān)問題提供了很好的辦法。本節(jié)內(nèi)容也是全章重要內(nèi)容之一。

二:說學(xué)習(xí)目標(biāo)和要求

通過本節(jié)的學(xué)習(xí),要讓學(xué)生掌握

(1):平面向量數(shù)量積的坐標(biāo)表示。

(2):平面兩點(diǎn)間的距離公式。

(3):向量垂直的坐標(biāo)表示的充要條件。

以及它們的一些簡單應(yīng)用,以上三點(diǎn)也是本節(jié)課的重點(diǎn),本節(jié)課的難點(diǎn)是向量垂直的坐標(biāo)表示的充要條件以及它的靈活應(yīng)用。

三:說教法

在教學(xué)過程中,我主要采用了以下幾種教學(xué)方法:

(1)啟發(fā)式教學(xué)法

因?yàn)楸竟?jié)課重點(diǎn)的坐標(biāo)表示公式的推導(dǎo)相對比較容易,所以這節(jié)課我準(zhǔn)備讓學(xué)生自行推導(dǎo)出兩個(gè)向量數(shù)量積的坐標(biāo)表示公式,然后引導(dǎo)學(xué)生發(fā)現(xiàn)幾個(gè)重要的結(jié)論:如模的計(jì)算公式,平面兩點(diǎn)間的距離公式,向量垂直的坐標(biāo)表示的充要條件。

(2)講解式教學(xué)法

主要是講清概念,解除學(xué)生在概念理解上的疑惑感;例題講解時(shí),演示解題過程!

主要輔助教學(xué)的手段(powerpoint)

(3)討論式教學(xué)法

主要是通過學(xué)生之間的相互交流來加深對較難問題的理解,提高學(xué)生的自學(xué)能力和發(fā)現(xiàn)、分析、解決問題以及創(chuàng)新能力。

四:說學(xué)法

學(xué)生是課堂的主體,一切教學(xué)活動(dòng)都要圍繞學(xué)生展開,借以誘發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)課堂上和學(xué)生的交流,從而達(dá)到及時(shí)發(fā)現(xiàn)問題,解決問題的目的。通過精講多練,充分調(diào)動(dòng)學(xué)生自主學(xué)習(xí)的積極性。如讓學(xué)生自己動(dòng)手推導(dǎo)兩個(gè)向量數(shù)量積的坐標(biāo)公式,引導(dǎo)學(xué)生推導(dǎo)4個(gè)重要的結(jié)論!并在具體的問題中,讓學(xué)生建立方程的思想,更好的解決問題!

五:說教學(xué)過程

這節(jié)課我準(zhǔn)備這樣進(jìn)行:

首先提出問題:要算出兩個(gè)非零向量的數(shù)量積,我們需要知道哪些量?

繼續(xù)提出問題:假如知道兩個(gè)非零向量的坐標(biāo),是不是可以用這兩個(gè)向量的坐標(biāo)來表示這兩個(gè)向量的數(shù)量積呢?

引導(dǎo)學(xué)生自己推導(dǎo)平面向量數(shù)量積的坐標(biāo)表示公式,在此公式基礎(chǔ)上還可以引導(dǎo)學(xué)生得到以下幾個(gè)重要結(jié)論:

(1) 模的計(jì)算公式

(2)平面兩點(diǎn)間的距離公式。

(3)兩向量夾角的余弦的坐標(biāo)表示

(4)兩個(gè)向量垂直的標(biāo)表示的充要條件

第二部分是例題講解,通過例題講解,使學(xué)生更加熟悉公式并會加以應(yīng)用。

例題1是書上122頁例1,此題是直接用平面向量數(shù)量積的坐標(biāo)公式的題,目的是讓學(xué)生熟悉這個(gè)公式,并在此題基礎(chǔ)上,求這兩個(gè)向量的夾角?目的是讓學(xué)生熟悉兩向量夾角的余弦的坐標(biāo)表示公式例題2是直接證明直線垂直的題,雖然比較簡單,但體現(xiàn)了一種重要的證明方法,這種方法要讓學(xué)生掌握,其實(shí)這一例題也是兩個(gè)向量垂直坐標(biāo)表示的充要條件的一個(gè)應(yīng)用:即兩個(gè)向量的數(shù)量積是否為零是判斷相應(yīng)的兩條直線是否垂直的重要方法之一。

例題3是在例2的基礎(chǔ)上稍微作了一下改變,目的是讓學(xué)生會應(yīng)用公式來解決問題,并讓學(xué)生在這要有建立方程的思想。

再配以練習(xí),讓學(xué)生能熟練的應(yīng)用公式,掌握今天所學(xué)內(nèi)容。

高中教案數(shù)學(xué)篇4

教學(xué)目標(biāo)

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用.

(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.

(2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.

2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進(jìn)行對稱美,簡潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.

教學(xué)建議

教材分析

(1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時(shí)又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ).

(2) 本節(jié)的教學(xué)重點(diǎn)是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn).

(3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn).

教法建議

(1) 對數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時(shí),既要考慮到對底數(shù) 的分類討論而且對每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

(2) 在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.

高中教案數(shù)學(xué)篇5

教學(xué)目標(biāo)

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識解決一些基本問題。

教學(xué)過程

等比數(shù)列性質(zhì)請同學(xué)們類比得出。

【方法規(guī)律】

1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題。方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法。

2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義。特別地,在判斷三個(gè)實(shí)數(shù)

a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)

3、在求等差數(shù)列前n項(xiàng)和的(小)值時(shí),常用函數(shù)的思想和方法加以解決。

【示范舉例】

例1:(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為。

(2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=。

例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)。

例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng)。

高中教案數(shù)學(xué)篇6

教學(xué)目標(biāo)

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

(3)通過學(xué)習(xí)組合知識,讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

教學(xué)重點(diǎn)難點(diǎn)

重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

難點(diǎn)是解組合的應(yīng)用題.

教學(xué)過程設(shè)計(jì)

(-)導(dǎo)入新課

(教師活動(dòng))提出下列思考問題,打出字幕.

[字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

(學(xué)生活動(dòng))討論并回答.

答案提示:(1)排列;(2)組合.

[評述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計(jì)的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.

(二)新課講授

[提出問題 創(chuàng)設(shè)情境]

(教師活動(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說明一個(gè)組合是什么?

3.一個(gè)組合與一個(gè)排列有何區(qū)別?

(學(xué)生活動(dòng))閱讀回答.

(教師活動(dòng))對照課文,逐一評析.

設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.

【歸納概括 建立新知】

(教師活動(dòng))承接上述問題的回答,展示下面知識.

[字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

[評述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

(學(xué)生活動(dòng))傾聽、思索、記錄.

(教師活動(dòng))提出思考問題.

[投影] 與 的關(guān)系如何?

(師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .根據(jù)分步計(jì)數(shù)原理,得到

[字幕]公式1:

公式2:

(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

設(shè)計(jì)意圖:本著以認(rèn)識概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

【例題示范 探求方法】

(教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.

[字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.

例2 計(jì)算:(1) ;(2) .

(學(xué)生活動(dòng))板演、示范.

(教師活動(dòng))講評并指出用兩種方法計(jì)算例2的第2小題.

[字幕]例3 已知 ,求 的所有值.

(學(xué)生活動(dòng))思考分析.

解 首先,根據(jù)組合的定義,有

其次,由原不等式轉(zhuǎn)化為

解得 ②

綜合①、②,得 ,即

[點(diǎn)評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識,強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.

【反饋練習(xí) 學(xué)會應(yīng)用】

(教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評.

[課堂練習(xí)]課本P99練習(xí)第2,5,6題.

[補(bǔ)充練習(xí)]

[字幕]1.計(jì)算:

2.已知 ,求 .

(學(xué)生活動(dòng))板演、解答.

設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

(三)小結(jié)

(師生活動(dòng))共同小結(jié).

本節(jié)主要內(nèi)容有

1.組合概念.

2.組合數(shù)計(jì)算的兩個(gè)公式.

(四)布置作業(yè)

1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

3.研究性題:

在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

(五)課后點(diǎn)評

在學(xué)習(xí)了排列知識的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

24959 主站蜘蛛池模板: 活性炭-蜂窝-椰壳-柱状-粉状活性炭-河南唐达净水材料有限公司 | 湖州织里童装_女童男童中大童装_款式多尺码全_织里儿童网【官网】-嘉兴嘉乐网络科技有限公司 | 德国GMN轴承,GMN角接触球轴承,GMN单向轴承,GMN油封,GMN非接触式密封 | 拉力机-万能试验机-材料拉伸试验机-电子拉力机-拉力试验机厂家-冲击试验机-苏州皖仪实验仪器有限公司 | Trimos测长机_测高仪_TESA_mahr,WYLER水平仪,PWB对刀仪-德瑞华测量技术(苏州)有限公司 | 耐酸碱胶管_耐腐蚀软管总成_化学品输送软管_漯河利通液压科技耐油耐磨喷砂软管|耐腐蚀化学软管 | 点胶机_点胶阀_自动点胶机_智能点胶机_喷胶机_点胶机厂家【欧力克斯】 | 硅PU球场、篮球场地面施工「水性、环保、弹性」硅PU材料生产厂家-广东中星体育公司 | uv固化机-丝印uv机-工业烤箱-五金蚀刻机-分拣输送机 - 保定市丰辉机械设备制造有限公司 | 金蝶帐无忧|云代账软件|智能财税软件|会计代账公司专用软件 | 耐破强度测试仪-纸箱破裂强度试验机-济南三泉中石单品站 | lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | 压力喷雾干燥机,喷雾干燥设备,柱塞隔膜泵-无锡市闻华干燥设备有限公司 | SDG吸附剂,SDG酸气吸附剂,干式酸性气体吸收剂生产厂家,超过20年生产使用经验。 - 富莱尔环保设备公司(原名天津市武清县环保设备厂) | Copeland/谷轮压缩机,谷轮半封闭压缩机,谷轮涡旋压缩机,型号规格,技术参数,尺寸图片,价格经销商 CTP磁天平|小电容测量仪|阴阳极极化_双液系沸点测定仪|dsj电渗实验装置-南京桑力电子设备厂 | 薄壁轴承-等截面薄壁轴承生产厂家-洛阳薄壁精密轴承有限公司 | 深圳活动策划公司|庆典策划|专业公关活动策划|深圳艺典文化传媒 重庆中专|职高|技校招生-重庆中专招生网 | 吊篮式|移动式冷热冲击试验箱-二槽冷热冲击试验箱-广东科宝 | 杭州顺源过滤机械有限公司官网-压滤机_板框压滤机_厢式隔膜压滤机厂家 | 电缆桥架生产厂家_槽式/梯式_热镀锌线槽_广东东莞雷正电气 | 等离子空气净化器_医用空气消毒机_空气净化消毒机_中央家用新风系统厂家_利安达官网 | 物联网卡_物联网卡购买平台_移动物联网卡办理_移动联通电信流量卡通信模组采购平台? | 安徽净化板_合肥岩棉板厂家_玻镁板厂家_安徽科艺美洁净科技有限公司 | 物和码官网,物和码,免费一物一码数字化营销SaaS平台 | 荣事达手推洗地机_洗地机厂家_驾驶式扫地机_工业清洁设备 | LCD3D打印机|教育|桌面|光固化|FDM3D打印机|3D打印设备-广州造维科技有限公司 | 杭州荣奥家具有限公司-浙江办公家具,杭州办公家具厂 | 磁力抛光机_磁力研磨机_磁力去毛刺机-冠古设备厂家|维修|租赁【官网】 | 耐火砖厂家,异形耐火砖-山东瑞耐耐火材料厂 | 可程式恒温恒湿试验箱|恒温恒湿箱|恒温恒湿试验箱|恒温恒湿老化试验箱|高低温试验箱价格报价-广东德瑞检测设备有限公司 | 郑州巴特熔体泵有限公司专业的熔体泵,熔体齿轮泵与换网器生产厂家 | 微型驱动系统解决方案-深圳市兆威机电股份有限公司 | 福建珂朗雅装饰材料有限公司「官方网站」| 12cr1mov无缝钢管切割-15crmog无缝钢管切割-40cr无缝钢管切割-42crmo无缝钢管切割-Q345B无缝钢管切割-45#无缝钢管切割 - 聊城宽达钢管有限公司 | 3dmax渲染-效果图渲染-影视动画渲染-北京快渲科技有限公司 | 心肺复苏模拟人|医学模型|急救护理模型|医学教学模型上海康人医学仪器设备有限公司 | 超声波成孔成槽质量检测仪-压浆机-桥梁预应力智能张拉设备-上海硕冠检测设备有限公司 | 选矿设备,选矿生产线,选矿工艺,选矿技术-昆明昆重矿山机械 | 国际高中-国际学校-一站式择校服务-远播国际教育 | 冷藏车厂家|冷藏车价格|小型冷藏车|散装饲料车厂家|程力专用汽车股份有限公司销售十二分公司 | 一体化污水处理设备-一体化净水设备-「山东梦之洁水处理」 |