初二數學創意設計教案
初二數學創意設計教案篇1
一、學習目標:1.使學生了解運用公式法分解因式的意義;
2.使學生掌握用平方差公式分解因式
二、重點難點
重點:掌握運用平方差公式分解因式.
難點:將單項式化為平方形式,再用平方差公式分解因式;
學習方法:歸納、概括、總結
三、合作學習
創設問題情境,引入新課
在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式.
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法.
1.請看乘法公式
(a+b)(a-b)=a2-b2(1)
左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是
a2-b2=(a+b)(a-b)(2)
左邊是一個多項式,右邊是整式的乘積.大家判斷一下,第二個式子從左邊到右邊是否是因式分解?
利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式.
a2-b2=(a+b)(a-b)
2.公式講解
如x2-16
=(x)2-42
=(x+4)(x-4).
9m2-4n2
=(3m)2-(2n)2
=(3m+2n)(3m-2n)
四、精講精練
例1、把下列各式分解因式:
(1)25-16x2;(2)9a2-b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2;(2)2x3-8x.
補充例題:判斷下列分解因式是否正確.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)?(a2-1).
五、課堂練習教科書練習
六、作業1、教科書習題
2、分解因式:x4-16x3-4x4x2-(y-z)2
3、若x2-y2=30,x-y=-5求x+y
初二數學創意設計教案篇2
教學目標:
1、知識目標:使學生掌握有理數的減法法則,熟練地進行有理數的減法運算。
2、能力目標:培養學生探究思維能力和分析解決問題的能力
3、情感目標:使學生了解加與減兩種運算的對立統一的關系,了解數學中轉化的數學思想方法,滲透辯證唯物主義思想,培養探究分析數學知識方法的興趣。
(三)重點、難點:
重點:有理數的減法法則,熟練地進行有理數的減法運算
難點:理解有理數減法的意義,正確熟練地進行有理數的減法運算
二、說教學方法:
根據本節教材內容和學生的實際水平,為了更有效地突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的指導思想,我將采用探究發現法、多媒體輔助教學方法等。教學中教師精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,教師并適時運用電教多媒體動畫演示,激發學生探索知識的欲望來達到對知識的發現,并自我探索找出規律,使學生始終處于主動探索問題的積極狀態,從而培養思維能力。
附教學工具:溫度計、投影儀、多媒體
三、說學法:
根據學法指導自主性的原則,讓學生在教師創設的問題情境下,通過教師的啟發點撥,學生的積極思考努力下,自主參與知識的發生、發展、發現的過程,使學生掌握了知識,體現了素質教育中學生學習能力的培養問題,達到教學的目的。
四、說教學程序:
(一)引入課題環節:
1、復習有理數的加法法則,為新課的講授作好鋪墊。
2、(提問)用算式表示:與-3的和等于-10的數。
(根據學過的知識,引導學生列出減法算式后提出問題:怎樣進行這里的減法運算呢?有理數的減法運算法則是什么呢?由問題的給出,激發學生探求解決問題方法的興趣,從而引出本節課的課題。
(二)新課講解環節:
1、通過投影儀給出以下算式:
減法加法
(+10)-(+3)=+7(+10)+(-3)=+7
讓學生比較上面這兩個算式并討論后得出:
(+10)-(+3)=(+10)+(-3)
再給出以下算式:
減法加法
(+5)-(+2)=+3(+5)+(-2)=+3
繼續讓學生比較上面這兩個算式并討論后得出:
(+5)-(+2)=(+5)+(-2)
從而,它啟發我們有理數的減法可以轉化成加法進行
2、講解課本p80的內容,回答復習題2提出的問題即如何求(-10)-(-3)的結果。通過分析講解,請學生自己歸納出有理數的減法法則,最后老師再完整地總結出法則。
文字敘述:減去一個數,等于加上這個數的相反數
字母表示:a-b=a+(-b)(說明:簡明的表示方法,體現字母表示數的優越性,
實際運算時會更加方便)
強調運用法則時:被減數不變,減號變加號,減數變成其相反數
減數變號
(減法============加法)
3、出示溫度計,用多媒體出現(如p81的圖2-20),并進行動畫演示,通過求15℃比5℃高多少?15℃比-5℃高多少?的實例來說明減法法則的合理性以及有理數減法的實際意義。同時進行練習反饋:課本p82的練習1,4、通過例題教學使學生鞏固方法,初步具備解決問題的能力。
例1.計算:(1)(-3)-(-5);(2)0-7
例2.計算(1)7.2-(-4.8);(2)(-3-)-5
說明:講解時注意讓學生復述有理數法減法法則,加深學生對法則的認識,并注意歸納有理數減法的規律,而不機械地將減法轉化成加法,為今后進一步學習減法運算逐步省略化成加法的中間步驟作準備。
(三)鞏固練習環節:
讓學生完成課本p82的練習2、3,鞏固有理數減法法則的運用,強化學生對這節課的掌握。第2題口答,第3題請6個學生上臺板演。對回答好的同學給予表揚肯定,如果有錯誤,請其他同學糾正。
(四)課堂小結環節:(師生共同完成)
本節課學習了有理數的減法運算,進行有理數的減法運算時轉化成加法進行計算,即a-b=a+(-b)
(五)布置課后作業:課本p83習題2.6的2、3、4、5的偶數題
通過作業反饋對學生所學知識掌握的效果,以利課后解決學生尚有疑難的地方。
初二數學創意設計教案篇3
1.通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次項及其系數、一次項及其系數與常數項等概念.
2.了解一元二次方程的解的概念,會檢驗一個數是不是一元二次方程的解.
重點
通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用這些概念解決簡單問題.
難點
一元二次方程及其二次項系數、一次項系數和常數項的識別.
活動1復習舊知
1.什么是方程?你能舉一個方程的例子嗎?
2.下列哪些方程是一元一次方程?并給出一元一次方程的概念和一般形式.
(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1
3.下列哪個實數是方程2x-1=3的解?并給出方程的解的概念.
A.0B.1C.2D.3
活動2探究新知
根據題意列方程.
1.教材第2頁問題1.
提出問題:
(1)正方形的大小由什么量決定?本題應該設哪個量為未知數?
(2)本題中有什么數量關系?能利用這個數量關系列方程嗎?怎么列方程?
(3)這個方程能整理為比較簡單的形式嗎?請說出整理之后的方程.
2.教材第2頁問題2.
提出問題:
(1)本題中有哪些量?由這些量可以得到什么?
(2)比賽隊伍的數量與比賽的場次有什么關系?如果有5個隊參賽,每個隊比賽幾場?一共有20場比賽嗎?如果不是20場比賽,那么究竟比賽多少場?
(3)如果有x個隊參賽,一共比賽多少場呢?
3.一個數比另一個數大3,且兩個數之積為0,求這兩個數.
提出問題:
本題需要設兩個未知數嗎?如果可以設一個未知數,那么方程應該怎么列?
4.一個正方形的面積的2倍等于25,這個正方形的邊長是多少?
活動3歸納概念
提出問題:
(1)上述方程與一元一次方程有什么相同點和不同點?
(2)類比一元一次方程,我們可以給這一類方程取一個什么名字?
(3)歸納一元二次方程的概念.
1.一元二次方程:只含有________個未知數,并且未知數的次數是________,這樣的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次項,a是二次項系數;bx是一次項,b是一次項系數;c是常數項.
提出問題:
(1)一元二次方程的一般形式有什么特點?等號的左、右分別是什么?
(2)為什么要限制a≠0,b,c可以為0嗎?
(3)2x2-x+1=0的一次項系數是1嗎?為什么?
3.一元二次方程的解(根):使一元二次方程左右兩邊相等的未知數的值叫做一元二次方程的解(根).
活動4例題與練習
例1在下列方程中,屬于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
總結:判斷一個方程是否是一元二次方程的依據:(1)整式方程;(2)只含有一個未知數;(3)含有未知數的項的次數是2.注意有些方程化簡前含有二次項,但是化簡后二次項系數為0,這樣的方程不是一元二次方程.
例2教材第3頁例題.
例3以-2為根的一元二次方程是()
A.x2+2x-1=0B.x2-x-2=0
C.x2+x+2=0D.x2+x-2=0
總結:判斷一個數是否為方程的解,可以將這個數代入方程,判斷方程左、右兩邊的值是否相等.
練習:
1.若(a-1)x2+3ax-1=0是關于x的一元二次方程,那么a的取值范圍是________.
2.將下列一元二次方程化為一般形式,并分別指出它們的二次項系數、一次項系數和常數項.
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4頁練習第2題.
4.若-4是關于x的一元二次方程2x2+7x-k=0的一個根,則k的值為________.
答案:1.a≠1;2.略;3.略;4.k=4.
活動5課堂小結與作業布置
課堂小結
我們學習了一元二次方程的哪些知識?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程嗎?
作業布置
教材第4頁習題21.1第1~7題.
初二數學創意設計教案篇4
教學目標
1、知道解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。
2、學會用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。
3、引導學生體會“降次”化歸的思路。
重點難點
重點:掌握用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。
難點:通過分解因式或直接開平方將一元二次方程降次為一元一次方程。
教學過程
(一)復習引入
1、判斷下列說法是否正確
(1)若p=1,q=1,則pq=l(),若pq=l,則p=1,q=1();
(2)若p=0,g=0,則pq=0(),若pq=0,則p=0或q=0();
(3)若x+3=0或x-6=0,則(x+3)(x-6)=0(),
若(x+3)(x-6)=0,則x+3=0或x-6=0();
(4)若x+3=或x-6=2,則(x+3)(x-6)=1(),
若(x+3)(x-6)=1,則x+3=或x-6=2()。
答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。
2、填空:若x2=a;則x叫a的,x=;若x2=4,則x=;
若x2=2,則x=。
答案:平方根,±,±2,±。
(二)創設情境
前面我們已經學了一元一次方程和二元一次方程組的解法,解二元一次方程組的基本思路是什么?(消元、化二元一次方程組為一元一次方程)。由解二元一次方程組的基本思路,你能想出解一元二次方程的基本思路嗎?
引導學生思考得出結論:解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。
給出1.1節問題一中的方程:(35-2x)2-900=0。
問:怎樣將這個方程“降次”為一元一次方程?
(三)探究新知
讓學生對上述問題展開討論,教師再利用“復習引入”中的內容引導學生,按課本P.6那樣,用因式分解法和直接開平方法,將方程(35-2x)2-900=0“降次”為兩個一元一次方程來解。讓學生知道什么叫因式分解法和直接開平方法。
(四)講解例題
展示課本P.7例1,例2。
按課本方式引導學生用因式分解法和直接開平方法解一元二次方程。
引導同學們小結:對于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接開平方法解。
因式分解法的基本步驟是:把方程化成一邊為0,另一邊是兩個一次因式的乘積(本節課主要是用平方差公式分解因式)的形式,然后使每一個一次因式等于0,分別解兩個一元一次方程,得到的兩個解就是原一元二次方程的解。
直接開平方法的步驟是:把方程變形成(ax+b)2=k(k≥0),然后直接開平方得ax+b=和ax+b=-,分別解這兩個一元一次方程,得到的解就是原一元二次方程的解。
注意:(1)因式分解法適用于一邊是0,另一邊可分解成兩個一次因式乘積的一元二次方程;
(2)直接開平方法適用于形如(ax+b)2=k(k≥0)的方程,由于負數沒有平方根,所以規定k≥0,當k<0時,方程無實數解。
(五)應用新知
課本P.8,練習。
(六)課堂小結
1、解一元二次方程的基本思路是什么?
2、通過“降次”,把—元二次方程化為兩個一元一次方程的方法有哪些?基本步驟是什么?
3、因式分解法和直接開平方法適用于解什么形式的一元二次方程?
(七)思考與拓展
不解方程,你能說出下列方程根的情況嗎?
(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。
答案:(1)有兩個不相等的實數根;(2)和(4)沒有實數根;(3)有兩個相等的實數根
通過解答這個問題,使學生明確一元二次方程的解有三種情況。
布置作業
初二數學創意設計教案篇5
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。
重點、難點
1.重點:
探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:
找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價—成本;=商品利潤率
二、新授
問:小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息—利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例:一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%—x
由等量關系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
初二數學創意設計教案篇6
教學目標:
1.知道換算關系
2.會寫數讀數
鞏固數感
教學重難點:會寫數讀數
教學過程:
1、我們學過了計數器上從右向左依次是:個位、十位、百位、千位、萬位。其中位是萬位、最低位是個位。
2、10個1是10,10個10是100,10個100是1000,10個1000是10000。
3、你還能用自己的話說說嗎?
4、數一數
10個10個的數,從2630數到3480
100個100個的數,從8300數到10000。
1000個1000個的數,從1000數到10000。
5、讀數
8267932792072003900010000368083007048
讀數的時候應該注意什么?
6、寫數
一萬一千一千九百三千零五十千零九兩千一百零八
六千零一十四千零五十八
7、2046420614261562
這四個數中的2有什么不同?
8、一個數千位上是6,百位上是5,十位上是6,這個數是(),讀作()。
一個數千位上是5,百位上是7,個位上是8,這個數是(),讀作()
一個數個位上是6,百位上是5,十位上是6,這個數是(),讀作()
一個數有5個千,6個百,6個十,這個數是()
一個數有6個千,3個1,這個數是()
一個數有10個1000,這個數是()
一個一個的數,跟1000相鄰的兩個數是()()
十個十個的數,跟1000相鄰的兩個數是()()
一百個一百個的數,跟1000相鄰的兩個數是()()
500和900比,()離600更近。
板書設計:各練習題
課后小結: