写方案网_方案策划方案模板下载

寫方案網(wǎng) > 教學(xué)教案 > 數(shù)學(xué)教案 >

2023初二數(shù)學(xué)教案

時(shí)間: 新華 數(shù)學(xué)教案

2023初二數(shù)學(xué)教案篇1

教學(xué)目標(biāo)

1、知識與技能

能確定多項(xiàng)式各項(xiàng)的公因式,會用提公因式法把多項(xiàng)式分解因式、

2、過程與方法

使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解、

3、情感、態(tài)度與價(jià)值觀

培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗(yàn),體會其應(yīng)用價(jià)值、

重、難點(diǎn)與關(guān)鍵

1、重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式、

2、難點(diǎn):正確地確定多項(xiàng)式的公因式、

3、關(guān)鍵:提公因式法關(guān)鍵是如何找公因式、方法是:一看系數(shù)、二看字母、公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪、

教學(xué)方法

采用“啟發(fā)式”教學(xué)方法、

教學(xué)過程

一、回顧交流,導(dǎo)入新知

【復(fù)習(xí)交流】

下列從左到右的變形是否是因式分解,為什么?

(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2、

問題:

1、多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

2、多項(xiàng)式4x2-x和xy2-yz-y呢?

請將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說明理由、

【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y、

概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法、

二、小組合作,探究方法

【教師提問】多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

【師生共識】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪、

三、范例學(xué)習(xí),應(yīng)用所學(xué)

【例1】把-4x2yz-12xy2z+4xyz分解因式、

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

【例2】分解因式,3a2(x-y)3-4b2(y-x)2

【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法、

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)2?3a2(y-x)+4b2(y-x)2]

=-(y-x)2[3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)2?3a2(x-y)-4b2(x-y)2

=(x-y)2[3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

【例3】用簡便的方法計(jì)算:0、84×12+12×0、6-0、44×12、

【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡便、

解:0、84×12+12×0、6-0、44×12

=12×(0、84+0、6-0、44)

=12×1=12、

【教師活動】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

四、隨堂練習(xí),鞏固深化

課本P167練習(xí)第1、2、3題、

【探研時(shí)空】

利用提公因式法計(jì)算:

0、582×8、69+1、236×8、69+2、478×8、69+5、704×8、69

五、課堂總結(jié),發(fā)展?jié)撃?/p>

1、利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)公因式、在找公因式時(shí)應(yīng)注意:(1)系數(shù)要找公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪、

2、因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止、

六、布置作業(yè),專題突破

課本P170習(xí)題15、4第1、4(1)、6題、

板書設(shè)計(jì)

2023初二數(shù)學(xué)教案篇2

我們在初中的學(xué)習(xí)過程中,已了解了整數(shù)指數(shù)冪的概念和運(yùn)算性質(zhì).從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù).進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實(shí)數(shù)指數(shù),并將冪的運(yùn)算性質(zhì)由整數(shù)指數(shù)冪推廣到實(shí)數(shù)指數(shù)冪.

教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實(shí)際背景,先給出兩個(gè)具體例子:GDP的增長問題和碳14的衰減問題.前一個(gè)問題,既讓學(xué)生回顧了初中學(xué)過的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價(jià)值.后一個(gè)問題讓學(xué)生體會其中的函數(shù)模型的同時(shí),激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識的學(xué)習(xí)作了鋪墊.

本節(jié)安排的內(nèi)容蘊(yùn)涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運(yùn)算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時(shí),充分關(guān)注與實(shí)際問題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值.

根據(jù)本節(jié)內(nèi)容的特點(diǎn),教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計(jì)算器和計(jì)算機(jī)創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.

三維目標(biāo)

1.通過與初中所學(xué)的知識進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì).掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì).培養(yǎng)學(xué)生觀察分析、抽象類比的能力.

2.掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想.通過運(yùn)算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理.

3.能熟練地運(yùn)用有理指數(shù)冪運(yùn)算性質(zhì)進(jìn)行化簡、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計(jì)算能力.

4.通過訓(xùn)練及點(diǎn)評,讓學(xué)生更能熟練掌握指數(shù)冪的運(yùn)算性質(zhì).展示函數(shù)圖象,讓學(xué)生通過觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗(yàn)數(shù)學(xué)的簡潔美和統(tǒng)一美.

重點(diǎn)難點(diǎn)

教學(xué)重點(diǎn)

(1)分?jǐn)?shù)指數(shù)冪和根式概念的理解.

(2)掌握并運(yùn)用分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì).

(3)運(yùn)用有理指數(shù)冪的性質(zhì)進(jìn)行化簡、求值.

教學(xué)難點(diǎn)

(1)分?jǐn)?shù)指數(shù)冪及根式概念的理解.

(2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用.

課時(shí)安排

3課時(shí)

教學(xué)過程

第1課時(shí)

作者:路致芳

導(dǎo)入新課

思路1.同學(xué)們在預(yù)習(xí)的過程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過對生物化石的研究來判斷生物的發(fā)展與進(jìn)化的,第二個(gè)問題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測生物所處的年代的.教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算.

思路2.同學(xué)們,我們在初中學(xué)習(xí)了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算.

推進(jìn)新課

新知探究

提出問題

(1)什么是平方根?什么是立方根?一個(gè)數(shù)的平方根有幾個(gè),立方根呢?

(2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?

(3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?

(4)可否用一個(gè)式子表達(dá)呢?

活動:教師提示,引導(dǎo)學(xué)生回憶初中的時(shí)候已經(jīng)學(xué)過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時(shí)啟發(fā)學(xué)生,具體問題一般化,歸納類比出n次方根的概念,評價(jià)學(xué)生的思維.

討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實(shí)數(shù)的平方根有兩個(gè),它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個(gè)數(shù)的立方根只有一個(gè),如:-8的立方根為-2.

(2)類比平方根、立方根的定義,一個(gè)數(shù)的四次方等于a,則這個(gè)數(shù)叫a的四次方根.一個(gè)數(shù)的五次方等于a,則這個(gè)數(shù)叫a的五次方根.一個(gè)數(shù)的六次方等于a,則這個(gè)數(shù)叫a的六次方根.

(3)類比(2)得到一個(gè)數(shù)的n次方等于a,則這個(gè)數(shù)叫a的n次方根.

(4)用一個(gè)式子表達(dá)是,若xn=a,則x叫a的n次方根.

教師板書n次方根的意義:

一般地,如果xn=a,那么x叫做a的n次方根(nthroot),其中n>1且n∈N.

可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例.

提出問題

(1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目).

①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.

(2)平方根,立方根,4次方根,5次方根,7次方根,分別對應(yīng)的方根的指數(shù)是什么數(shù),有什么特點(diǎn)?4,±8,16,-32,32,0,a6分別對應(yīng)什么性質(zhì)的數(shù),有什么特點(diǎn)?

(3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個(gè)的,也有兩個(gè)的,你能否總結(jié)一般規(guī)律呢?

(4)任何一個(gè)數(shù)a的偶次方根是否存在呢?

活動:教師提示學(xué)生切實(shí)緊扣n次方根的概念,求一個(gè)數(shù)a的n次方根,就是求出的那個(gè)數(shù)的n次方等于a,及時(shí)點(diǎn)撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的特點(diǎn),對問題(2)中的結(jié)論,類比推廣引申,考慮要全面,對回答正確的學(xué)生及時(shí)表揚(yáng),對回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路.

討論結(jié)果:(1)因?yàn)椤?的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.

(2)方根的指數(shù)是2,3,4,5,7…特點(diǎn)是有奇數(shù)和偶數(shù).總的來看,這些數(shù)包括正數(shù),負(fù)數(shù)和零.

(3)一個(gè)數(shù)a的奇次方根只有一個(gè),一個(gè)正數(shù)a的偶次方根有兩個(gè),是互為相反數(shù).0的任何次方根都是0.

(4)任何一個(gè)數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因?yàn)闆]有一個(gè)數(shù)的偶次方是一個(gè)負(fù)數(shù).

類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):

①當(dāng)n為偶數(shù)時(shí),正數(shù)a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0).

②n為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號na表示.

③負(fù)數(shù)沒有偶次方根;0的任何次方根都是零.

上面的文字語言可用下面的式子表示:

a為正數(shù):n為奇數(shù),a的n次方根有一個(gè)為na,n為偶數(shù),a的n次方根有兩個(gè)為±na.

a為負(fù)數(shù):n為奇數(shù),a的n次方根只有一個(gè)為na,n為偶數(shù),a的n次方根不存在.

零的n次方根為零,記為n0=0.

可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例.

思考

根據(jù)n次方根的性質(zhì)能否舉例說明上述幾種情況?

活動:教師提示學(xué)生對方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時(shí)巡視學(xué)生,隨機(jī)給出一個(gè)數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時(shí)糾正學(xué)生在舉例過程中的問題.

解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等.其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個(gè)名稱——根式.

根式的概念:

式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù).

如3-27中,3叫根指數(shù),-27叫被開方數(shù).

思考

nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?

活動:教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號,充分讓學(xué)生多舉實(shí)例,分組討論.教師點(diǎn)撥,注意歸納整理.

〔如3(-3)3=3-27=-3,4(-8)4=-8=8〕.

解答:根據(jù)n次方根的意義,可得:(na)n=a.

通過探究得到:n為奇數(shù),nan=a.

n為偶數(shù),nan=a=a,-a,a≥0,a<0.

因此我們得到n次方根的運(yùn)算性質(zhì):

①(na)n=a.先開方,再乘方(同次),結(jié)果為被開方數(shù).

②n為奇數(shù),nan=a.先奇次乘方,再開方(同次),結(jié)果為被開方數(shù).

n為偶數(shù),nan=a=a,-a,a≥0,a<0.先偶次乘方,再開方(同次),結(jié)果為被開方數(shù)的絕對值.

應(yīng)用示例

思路1

例求下列各式的值:

(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).

活動:求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識,關(guān)鍵是啥,搞清這些之后,再針對每一個(gè)題目仔細(xì)分析.觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過程中出現(xiàn)的問題并對癥下藥.求下列各式的值實(shí)際上是求數(shù)的方根,可按方根的運(yùn)算性質(zhì)來解,首先要搞清楚運(yùn)算順序,目的是把被開方數(shù)的符號定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號,如果是偶數(shù),開方的結(jié)果必須是非負(fù)數(shù).

解:(1)3(-8)3=-8;

(2)(-10)2=10;

(3)4(3-π)4=π-3;

(4)(a-b)2=a-b(a>b).

點(diǎn)評:不注意n的奇偶性對式子nan的值的影響,是導(dǎo)致問題出現(xiàn)的一個(gè)重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會用,活用.

變式訓(xùn)練

求出下列各式的值:

(1)7(-2)7;

(2)3(3a-3)3(a≤1);

(3)4(3a-3)4.

解:(1)7(-2)7=-2,

(2)3(3a-3)3(a≤1)=3a-3,

(3)4(3a-3)4=

點(diǎn)評:本題易錯(cuò)的是第(3)題,往往忽視a與1大小的討論,造成錯(cuò)解.

思路2

例1下列各式中正確的是()

A.4a4=a

B.6(-2)2=3-2

C.a0=1

D.10(2-1)5=2-1

活動:教師提示,這是一道選擇題,本題考查n次方根的運(yùn)算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運(yùn)算性質(zhì)來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會方根運(yùn)算的實(shí)質(zhì),學(xué)生先思考哪些地方容易出錯(cuò),再回答.

解析:(1)4a4=a,考查n次方根的運(yùn)算性質(zhì),當(dāng)n為偶數(shù)時(shí),應(yīng)先寫nan=a,故A項(xiàng)錯(cuò).

(2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項(xiàng)錯(cuò).

(3)a0=1是有條件的,即a≠0,故C項(xiàng)也錯(cuò).

(4)D項(xiàng)是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,故D項(xiàng)正確.所以答案選D.

答案:D

點(diǎn)評:本題由于考查n次方根的運(yùn)算性質(zhì)與運(yùn)算順序,有時(shí)極易選錯(cuò),選四個(gè)答案的情況都會有,因此解題時(shí)千萬要細(xì)心.

例23+22+3-22=__________.

活動:讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據(jù)方根的運(yùn)算求出結(jié)果是解題的關(guān)鍵,因此將根號下面的式子化成一個(gè)完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式.正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路.

解析:因?yàn)?+22=1+22+(2)2=(1+2)2=2+1,

3-22=(2)2-22+1=(2-1)2=2-1,

所以3+22+3-22=22.

答案:22

點(diǎn)評:不難看出3-22與3+22形式上有些特點(diǎn),即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個(gè)完全平方式.

思考

上面的例2還有別的解法嗎?

活動:教師引導(dǎo),去根號常常利用完全平方公式,有時(shí)平方差公式也可,同學(xué)們觀察兩個(gè)式子的特點(diǎn),具有對稱性,再考慮并交流討論,一個(gè)是“+”,一個(gè)是“-”,去掉一層根號后,相加正好抵消.同時(shí)借助平方差,又可去掉根號,因此把兩個(gè)式子的和看成一個(gè)整體,兩邊平方即可,探討得另一種解法.

另解:利用整體思想,x=3+22+3-22,

兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

點(diǎn)評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個(gè)完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個(gè)整體利用完全平方公式和平方差公式去解.

變式訓(xùn)練

若a2-2a+1=a-1,求a的取值范圍.

解:因?yàn)閍2-2a+1=a-1,而a2-2a+1=(a-1)2=a-1=a-1,

即a-1≥0,

所以a≥1.

2023初二數(shù)學(xué)教案篇3

教學(xué)目的

通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,進(jìn)一步體會方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。

重點(diǎn)、難點(diǎn)

1.重點(diǎn):

探索這些實(shí)際問題中的等量關(guān)系,由此等量關(guān)系列出方程。

2.難點(diǎn):

找出能表示整個(gè)題意的等量關(guān)系。

教學(xué)過程

一、復(fù)習(xí)

1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)

本利和=本金×利息×年數(shù)+本金

2.商品利潤等有關(guān)知識。

利潤=售價(jià)—成本;=商品利潤率

二、新授

問:小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價(jià)值48.6元的計(jì)算器,問小明爸爸前年存了多少元?

利息—利息稅=48.6

可設(shè)小明爸爸前年存了x元,那么二年后共得利息為

2.43%×X×2,利息稅為2.43%X×2×20%

根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6

問,扣除利息的20%,那么實(shí)際得到的利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得

2.43%x·2.80%=48.6

解方程,得x=1250

例:一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?

大家想一想這15元的利潤是怎么來的?

標(biāo)價(jià)的80%(即售價(jià))-成本=15

若設(shè)這種服裝每件的成本是x元,那么

每件服裝的標(biāo)價(jià)為:(1+40%)x

每件服裝的實(shí)際售價(jià)為:(1+40%)x·80%

每件服裝的利潤為:(1+40%)x·80%—x

由等量關(guān)系,列出方程:

(1+40%)x·80%—x=15

解方程,得x=125

答:每件服裝的成本是125元。

三、鞏固練習(xí)

教科書第15頁,練習(xí)1、2。

四、小結(jié)

當(dāng)運(yùn)用方程解決實(shí)際問題時(shí),首先要弄清題意,從實(shí)際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。

2023初二數(shù)學(xué)教案篇4

初二上冊數(shù)學(xué)知識點(diǎn)總結(jié):等腰三角形

一、等腰三角形的性質(zhì):

1、等腰三角形兩腰相等.

2、等腰三角形兩底角相等(等邊對等角)。

3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.

4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。

5、等邊三角形的性質(zhì):

①等邊三角形三邊都相等.

②等邊三角形三個(gè)內(nèi)角都相等,都等于60°

③等邊三角形每條邊上都存在三線合一.

④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).

6.基本判定:

⑴等腰三角形的判定:

①有兩條邊相等的三角形是等腰三角形.

②如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊).

⑵等邊三角形的判定:

①三條邊都相等的三角形是等邊三角形.

②三個(gè)角都相等的三角形是等邊三角形.

③有一個(gè)角是60°的等腰三角形是等邊三角形.

2023初二數(shù)學(xué)教案篇5

一、讀一讀

學(xué)習(xí)目標(biāo):1、掌握“三角形內(nèi)角和定理”的證明及其簡單應(yīng)用;

2、體會思維實(shí)驗(yàn)和符號化的理性作用

二、試一試

自學(xué)指導(dǎo):

1、回憶三角形內(nèi)角和的探索方式,想一想,根據(jù)前面給出的公里和定理,你能進(jìn)行論證么?

2、已知:如右圖所示,△ABC

求證:∠A+∠B+∠C=180°

思考:延長BC到D,過點(diǎn)C作射線CE∥BA,這樣就相

當(dāng)于把∠A移到了的位置,把∠B移到的位置。

注意:這里的CD,CE稱為輔助線,輔助線通常畫成虛線

證明:作BC的延長線CD,過點(diǎn)C作射線CE∥BA,則:

3、你還有其它方式么(可參考課本239頁“議一議”小明的想法;241頁聯(lián)系拓廣4)?方法越多越好!

三、練一練

1、直角三角形的兩銳角之和是多少度?正三角形的一個(gè)內(nèi)角是多少度?請證明你的結(jié)論。

2、已知:如圖,在△ABC中,∠A=60°,∠C=70°,點(diǎn)D和點(diǎn)E分別在AB和AC上,且DE∥BC

求證:∠ADE=50°

3、如圖,在△ABC中,DE∥BC,∠DBE=30°,∠EBC=25°,求∠BDE的大小。

4、證明:四邊形的內(nèi)角和等于360°

2023初二數(shù)學(xué)教案篇6

方差

一. 教學(xué)目標(biāo):

1. 了解方差的定義和計(jì)算公式。

2. 理解方差概念的產(chǎn)生和形成的過程。

3. 會用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動大小。

二. 重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:

1. 重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。

2. 難點(diǎn):理解方差公式

3. 難點(diǎn)的突破方法:

方差公式:S = [( - ) +( - ) +…+( - ) ]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。

(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。

(2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時(shí),僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。

(3)第三環(huán)節(jié) 教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個(gè)數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計(jì)量。

三. 例習(xí)題的意圖分析:

1. 教材P125的討論問題的意圖:

(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

(2).為引入方差概念和方差計(jì)算公式作鋪墊。

(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。

(4).客觀上反映了在解決某些實(shí)際問題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。

2. 教材P154例1的設(shè)計(jì)意圖:

(1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對方差公式的掌握。

(2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。

四.課堂引入:

除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績選擇參賽隊(duì)員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。

五. 例題的分析:

教材P154例1在分析過程中應(yīng)抓住以下幾點(diǎn):

1. 題目中“整齊”的含義是什么?說明在這個(gè)問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。

2. 在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄担@個(gè)問題可以使學(xué)生明確利用方差計(jì)算步驟。

3. 方差怎樣去體現(xiàn)波動大小?

這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。

六. 隨堂練習(xí):

1. 從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

問:(1)哪種農(nóng)作物的苗長的比較高?

(2)哪種農(nóng)作物的苗長得比較整齊?

2. 段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭荆l的成績比較穩(wěn)定?為什么?

測試次數(shù) 1 2 3 4 5

段巍 13 14 13 12 13

金志強(qiáng) 10 13 16 14 12

參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

2.段巍的成績比金志強(qiáng)的成績要穩(wěn)定。

七. 課后練習(xí):

1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。

2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S ,所以確定 去參加比賽。

3. 甲、乙兩臺機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺機(jī)床的性能較好?

4. 小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)

小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好

4. =10.9、S =0.02;

=10.9、S =0.008

選擇小兵參加比賽。

2023初二數(shù)學(xué)教案篇7

一、學(xué)習(xí)目標(biāo):1.完全平方公式的推導(dǎo)及其應(yīng)用.

2.完全平方公式的幾何解釋.

二、重點(diǎn)難點(diǎn):

重點(diǎn):完全平方公式的推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)、幾何解釋,靈活應(yīng)用

難點(diǎn):理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計(jì)算

三、合作學(xué)習(xí)

Ⅰ.提出問題,創(chuàng)設(shè)情境

一位老人非常喜歡孩子.每當(dāng)有孩子到他家做客時(shí),老人都要拿出糖果招待他們.來一個(gè)孩子,老人就給這個(gè)孩子一塊糖,來兩個(gè)孩子,老人就給每個(gè)孩子兩塊塘,…

(1)第一天有a個(gè)男孩去了老人家,老人一共給了這些孩子多少塊糖?

(2)第二天有b個(gè)女孩去了老人家,老人一共給了這些孩子多少塊糖?

(3)第三天這(a+b)個(gè)孩子一起去看老人,老人一共給了這些孩子多少塊糖?

(4)這些孩子第三天得到的糖果數(shù)與前兩天他們得到的糖果總數(shù)哪個(gè)多?多多少?為什么?

Ⅱ.導(dǎo)入新課

計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律?

(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

(5)(a+b)2=________;(6)(a-b)2=________.

兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)這兩個(gè)數(shù)的積的二倍的2倍.

(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2

四、精講精練

例1、應(yīng)用完全平方公式計(jì)算:

(1)(4m+n)2(2)(y-)2(3)(-a-b)2(4)(b-a)2

例2、用完全平方公式計(jì)算:

(1)1022(2)992

2023初二數(shù)學(xué)教案篇8

學(xué)習(xí)目標(biāo)

1、通過運(yùn)算多項(xiàng)式乘法,來推導(dǎo)平方差公式,學(xué)生的認(rèn)識由一般法則到特殊法則的能力。

2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。

3、初步學(xué)會運(yùn)用平方差公式進(jìn)行計(jì)算。

學(xué)習(xí)重難點(diǎn)重點(diǎn)是平方差公式的推導(dǎo)及應(yīng)用。

難點(diǎn)是對公式中a,b的廣泛含義的理解及正確運(yùn)用。

自學(xué)過程設(shè)計(jì)教學(xué)過程設(shè)計(jì)

看一看

認(rèn)真閱讀教材,記住以下知識:

文字?jǐn)⑹銎椒讲罟剑篲________________

用字母表示:________________

做一做:

1、完成下列練習(xí):

①(m+n)(p+q)

②(a+b)(x-y)

③(2x+3y)(a-b)

④(a+2)(a-2)

⑤(3-x)(3+x)

⑥(2m+n)(2m-n)

想一想

你還有哪些地方不是很懂?請寫出來。

_______________________________

_______________________________

________________________________.

1.下列計(jì)算對不對?若不對,請?jiān)跈M線上寫出正確結(jié)果.

(1)(x-3)(x+3)=x2-3(),__________;

(2)(2x-3)(2x+3)=2x2-9(),_________;

(3)(-x-3)(x-3)=x2-9(),_________;

(4)(2xy-1)(2xy+1)=2xy2-1(),________.

2.(1)(3a-4b)()=9a2-16b2;(2)(4+2x)()=16-4x2;

(3)(-7-x)()=49-x2;(4)(-a-3b)(-3b+a)=_________.

3.計(jì)算:50×49=_________.

應(yīng)用探究

1.幾何解釋平方差公式

展示:邊長a的大正方形中有一個(gè)邊長為b的小正方形。

(1)請計(jì)算圖的陰影部分的面積(讓學(xué)生用正方形的面積公式計(jì)算)。

(2)小明將陰影部分拼成一個(gè)長方形,這個(gè)長方形長與寬是多少?你能表示出它的面積嗎?

圖2

2.用平方差公式計(jì)算

(1)103×93(2)59.8×60.2

拓展提高

1.閱讀題:

我們在計(jì)算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時(shí),發(fā)現(xiàn)直接運(yùn)算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個(gè)算式能用乘法公式計(jì)算.解答過程如下:

原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(24-1)(24+1)(28+1)(216+1)(232+1)

=……=264-1

你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請?jiān)囋嚳?

2.仔細(xì)觀察,探索規(guī)律:

(x-1)(x+1)=x2-1

(x-1)(x2+x+1)=x3-1

(x-1)(x3+x2+x+1)=x4-1

(x-1)(x4+x3+x2+x+1)=x5-1

……

(1)試求25+24+23+22+2+1的值;

(2)寫出22006+22005+22004+…+2+1的個(gè)位數(shù).

堂堂清

一、選擇題

1.下列各式中,能用平方差公式計(jì)算的是()

(1)(a-2b)(-a+2b);

(2)(a-2b)(-a-2b);

(3)(a-2b)(a+2b);

(4)(a-2b)(2a+b).

A.(1)(2)B.(2)(3)

C.(3)(4)D.(1)(4)

2.計(jì)算(-4x-5y)(5y-4x)的結(jié)果是()

A.16x2-25y2B.25y2-16x2C.-16x2-25y2D.16x2+25y2

3.下列計(jì)算錯(cuò)誤的是()

A.(6a+1)(6a-1)=36a2-1

B.(-m-n)(m-n)=n2-m2

C.(a3-8)(-a3+8)=a9-64D.(-a2+1)(-a2-1)=a4-1

4.下列計(jì)算正確的是()

A.(a-b)2=a2-b2

B.(a-b)(b-a)=a2-b2

C.(a+b)(-a-b)=a2-b2D.(-a-b)(-a+b)=a2-b2

5.下列算式能連續(xù)兩次用平方差公式計(jì)算的是()

A.(x-y)(x2+y2)(x-y)B.(x+1)(x2-1)(x+1)

C.(x+y)(x2-y2)(x-y)D.(x+y)(x2+y2)(x-y)

二、計(jì)算:

(1)(5ab-3x)(-3x-5ab)

(2)(-y2+x)(x+y2)

教后反思本節(jié)課是運(yùn)算多項(xiàng)式乘法,來推導(dǎo)平方差公式,使學(xué)生的認(rèn)識由一般法則到特殊法則的能力,并能歸納總結(jié)出平方差公式的結(jié)構(gòu)特征,利用平方差公式來進(jìn)行運(yùn)算。

26194 主站蜘蛛池模板: 江苏全风,高压风机,全风环保风机,全风环形高压风机,防爆高压风机厂家-江苏全风环保科技有限公司(官网) | 粘度计NDJ-5S,粘度计NDJ-8S,越平水分测定仪-上海右一仪器有限公司 | 扫地车厂家-山西洗地机-太原电动扫地车「大同朔州吕梁晋中忻州长治晋城洗地机」山西锦力环保科技有限公司 | 臭氧发生器_臭氧消毒机 - 【同林品牌 实力厂家】 | 阿里巴巴诚信通温州、台州、宁波、嘉兴授权渠道商-浙江联欣科技提供阿里会员办理 | 招商帮-一站式网络营销服务|搜索营销推广|信息流推广|短视视频营销推广|互联网整合营销|网络推广代运营|招商帮企业招商好帮手 | 山东led显示屏,山东led全彩显示屏,山东LED小间距屏,临沂全彩电子屏-山东亚泰视讯传媒有限公司 | 焊接烟尘净化器__焊烟除尘设备_打磨工作台_喷漆废气治理设备 -催化燃烧设备 _天津路博蓝天环保科技有限公司 | lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | 背压阀|减压器|不锈钢减压器|减压阀|卫生级背压阀|单向阀|背压阀厂家-上海沃原自控阀门有限公司 本安接线盒-本安电路用接线盒-本安分线盒-矿用电话接线盒-JHH生产厂家-宁波龙亿电子科技有限公司 | 筒瓦厂家-仿古瓦-寺庙-古建琉璃瓦-宜兴市古典园林建筑陶瓷厂有限公司 | 北京工业设计公司-产品外观设计-产品设计公司-千策良品工业设计 北京翻译公司-专业合同翻译-医学标书翻译收费标准-慕迪灵 | 德国EA可编程直流电源_电子负载,中国台湾固纬直流电源_交流电源-苏州展文电子科技有限公司 | 生物颗粒燃烧机-生物质燃烧机-热风炉-生物颗粒蒸汽发生器-丽水市久凯能源设备有限公司 | 上海质量认证办理中心| 千淘酒店差旅平台-中国第一家针对TMC行业的酒店资源供应平台 | 伸缩节_伸缩器_传力接头_伸缩接头_巩义市联通管道厂 | hdpe土工膜-防渗膜-复合土工膜-长丝土工布价格-厂家直销「恒阳新材料」-山东恒阳新材料有限公司 ETFE膜结构_PTFE膜结构_空间钢结构_膜结构_张拉膜_浙江萬豪空间结构集团有限公司 | 短信通106短信接口验证码接口群发平台_国际短信接口验证码接口群发平台-速度网络有限公司 | 北京自然绿环境科技发展有限公司专业生产【洗车机_加油站洗车机-全自动洗车机】 | 不锈钢发酵罐_水果酒发酵罐_谷物发酵罐_山东誉诚不锈钢制品有限公司 | 自动螺旋上料机厂家价格-斗式提升机定制-螺杆绞龙输送机-杰凯上料机 | 小型手持气象站-空气负氧离子监测站-多要素微气象传感器-山东天合环境科技有限公司 | 雷达液位计_超声波风速风向仪_雨量传感器_辐射传感器-山东风途物联网 | 中医中药治疗血小板减少-石家庄血液病肿瘤门诊部 | 气弹簧定制-气动杆-可控气弹簧-不锈钢阻尼器-工业气弹簧-可调节气弹簧厂家-常州巨腾气弹簧供应商 | 抓斗式清污机|螺杆式|卷扬式启闭机|底轴驱动钢坝|污水处理闸门-方源水利机械 | 合肥仿石砖_合肥pc砖厂家_合肥PC仿石砖_安徽旭坤建材有限公司 | 航拍_专业的无人机航拍摄影门户社区网站_航拍网| 雄松华章(广州华章MBA)官网-专注MBA/MPA/MPAcc/MEM辅导培训 | 全自动过滤器_反冲洗过滤器_自清洗过滤器_量子除垢环_量子环除垢_量子除垢 - 安士睿(北京)过滤设备有限公司 | 江苏农村商业银行招聘网_2024江苏农商行考试指南_江苏农商行校园招聘 | 安平县鑫川金属丝网制品有限公司,声屏障,高速声屏障,百叶孔声屏障,大弧形声屏障,凹凸穿孔声屏障,铁路声屏障,顶部弧形声屏障,玻璃钢吸音板 | 长沙印刷厂-包装印刷-画册印刷厂家-湖南省日大彩色印务有限公司 青州搬家公司电话_青州搬家公司哪家好「鸿喜」青州搬家 | 网带通过式抛丸机,,网带式打砂机,吊钩式,抛丸机,中山抛丸机生产厂家,江门抛丸机,佛山吊钩式,东莞抛丸机,中山市泰达自动化设备有限公司 | 中开泵,中开泵厂家,双吸中开泵-山东博二泵业有限公司 | 动物解剖台-成蚊接触筒-标本工具箱-负压实验台-北京哲成科技有限公司 | 有福网(yofus.com)洗照片冲印,毕业聚会纪念册相册制作个性DIY平台 | 点胶机_点胶阀_自动点胶机_智能点胶机_喷胶机_点胶机厂家【欧力克斯】 | 铝箔袋,铝箔袋厂家,东莞铝箔袋,防静电铝箔袋,防静电屏蔽袋,防静电真空袋,真空袋-东莞铭晋让您的产品与众不同 | 【德信自动化】点胶机_全自动点胶机_自动点胶机厂家_塑料热压机_自动螺丝机-深圳市德信自动化设备有限公司 |