2023初二數(shù)學(xué)教案
2023初二數(shù)學(xué)教案篇1
教學(xué)目標(biāo)
1、知識與技能
能確定多項(xiàng)式各項(xiàng)的公因式,會用提公因式法把多項(xiàng)式分解因式、
2、過程與方法
使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解、
3、情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗(yàn),體會其應(yīng)用價(jià)值、
重、難點(diǎn)與關(guān)鍵
1、重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式、
2、難點(diǎn):正確地確定多項(xiàng)式的公因式、
3、關(guān)鍵:提公因式法關(guān)鍵是如何找公因式、方法是:一看系數(shù)、二看字母、公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪、
教學(xué)方法
采用“啟發(fā)式”教學(xué)方法、
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【復(fù)習(xí)交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2、
問題:
1、多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?
2、多項(xiàng)式4x2-x和xy2-yz-y呢?
請將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說明理由、
【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y、
概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法、
二、小組合作,探究方法
【教師提問】多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?
【師生共識】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪、
三、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把-4x2yz-12xy2z+4xyz分解因式、
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法、
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2?3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2?3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用簡便的方法計(jì)算:0、84×12+12×0、6-0、44×12、
【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡便、
解:0、84×12+12×0、6-0、44×12
=12×(0、84+0、6-0、44)
=12×1=12、
【教師活動】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習(xí),鞏固深化
課本P167練習(xí)第1、2、3題、
【探研時(shí)空】
利用提公因式法計(jì)算:
0、582×8、69+1、236×8、69+2、478×8、69+5、704×8、69
五、課堂總結(jié),發(fā)展?jié)撃?/p>
1、利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)公因式、在找公因式時(shí)應(yīng)注意:(1)系數(shù)要找公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪、
2、因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止、
六、布置作業(yè),專題突破
課本P170習(xí)題15、4第1、4(1)、6題、
板書設(shè)計(jì)
2023初二數(shù)學(xué)教案篇2
我們在初中的學(xué)習(xí)過程中,已了解了整數(shù)指數(shù)冪的概念和運(yùn)算性質(zhì).從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù).進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實(shí)數(shù)指數(shù),并將冪的運(yùn)算性質(zhì)由整數(shù)指數(shù)冪推廣到實(shí)數(shù)指數(shù)冪.
教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實(shí)際背景,先給出兩個(gè)具體例子:GDP的增長問題和碳14的衰減問題.前一個(gè)問題,既讓學(xué)生回顧了初中學(xué)過的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價(jià)值.后一個(gè)問題讓學(xué)生體會其中的函數(shù)模型的同時(shí),激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識的學(xué)習(xí)作了鋪墊.
本節(jié)安排的內(nèi)容蘊(yùn)涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運(yùn)算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時(shí),充分關(guān)注與實(shí)際問題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值.
根據(jù)本節(jié)內(nèi)容的特點(diǎn),教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計(jì)算器和計(jì)算機(jī)創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.
三維目標(biāo)
1.通過與初中所學(xué)的知識進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì).掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì).培養(yǎng)學(xué)生觀察分析、抽象類比的能力.
2.掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想.通過運(yùn)算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理.
3.能熟練地運(yùn)用有理指數(shù)冪運(yùn)算性質(zhì)進(jìn)行化簡、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計(jì)算能力.
4.通過訓(xùn)練及點(diǎn)評,讓學(xué)生更能熟練掌握指數(shù)冪的運(yùn)算性質(zhì).展示函數(shù)圖象,讓學(xué)生通過觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗(yàn)數(shù)學(xué)的簡潔美和統(tǒng)一美.
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn)
(1)分?jǐn)?shù)指數(shù)冪和根式概念的理解.
(2)掌握并運(yùn)用分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì).
(3)運(yùn)用有理指數(shù)冪的性質(zhì)進(jìn)行化簡、求值.
教學(xué)難點(diǎn)
(1)分?jǐn)?shù)指數(shù)冪及根式概念的理解.
(2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用.
課時(shí)安排
3課時(shí)
教學(xué)過程
第1課時(shí)
作者:路致芳
導(dǎo)入新課
思路1.同學(xué)們在預(yù)習(xí)的過程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過對生物化石的研究來判斷生物的發(fā)展與進(jìn)化的,第二個(gè)問題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測生物所處的年代的.教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算.
思路2.同學(xué)們,我們在初中學(xué)習(xí)了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算.
推進(jìn)新課
新知探究
提出問題
(1)什么是平方根?什么是立方根?一個(gè)數(shù)的平方根有幾個(gè),立方根呢?
(2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?
(3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?
(4)可否用一個(gè)式子表達(dá)呢?
活動:教師提示,引導(dǎo)學(xué)生回憶初中的時(shí)候已經(jīng)學(xué)過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時(shí)啟發(fā)學(xué)生,具體問題一般化,歸納類比出n次方根的概念,評價(jià)學(xué)生的思維.
討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實(shí)數(shù)的平方根有兩個(gè),它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個(gè)數(shù)的立方根只有一個(gè),如:-8的立方根為-2.
(2)類比平方根、立方根的定義,一個(gè)數(shù)的四次方等于a,則這個(gè)數(shù)叫a的四次方根.一個(gè)數(shù)的五次方等于a,則這個(gè)數(shù)叫a的五次方根.一個(gè)數(shù)的六次方等于a,則這個(gè)數(shù)叫a的六次方根.
(3)類比(2)得到一個(gè)數(shù)的n次方等于a,則這個(gè)數(shù)叫a的n次方根.
(4)用一個(gè)式子表達(dá)是,若xn=a,則x叫a的n次方根.
教師板書n次方根的意義:
一般地,如果xn=a,那么x叫做a的n次方根(nthroot),其中n>1且n∈N.
可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例.
提出問題
(1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目).
①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.
(2)平方根,立方根,4次方根,5次方根,7次方根,分別對應(yīng)的方根的指數(shù)是什么數(shù),有什么特點(diǎn)?4,±8,16,-32,32,0,a6分別對應(yīng)什么性質(zhì)的數(shù),有什么特點(diǎn)?
(3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個(gè)的,也有兩個(gè)的,你能否總結(jié)一般規(guī)律呢?
(4)任何一個(gè)數(shù)a的偶次方根是否存在呢?
活動:教師提示學(xué)生切實(shí)緊扣n次方根的概念,求一個(gè)數(shù)a的n次方根,就是求出的那個(gè)數(shù)的n次方等于a,及時(shí)點(diǎn)撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的特點(diǎn),對問題(2)中的結(jié)論,類比推廣引申,考慮要全面,對回答正確的學(xué)生及時(shí)表揚(yáng),對回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路.
討論結(jié)果:(1)因?yàn)椤?的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.
(2)方根的指數(shù)是2,3,4,5,7…特點(diǎn)是有奇數(shù)和偶數(shù).總的來看,這些數(shù)包括正數(shù),負(fù)數(shù)和零.
(3)一個(gè)數(shù)a的奇次方根只有一個(gè),一個(gè)正數(shù)a的偶次方根有兩個(gè),是互為相反數(shù).0的任何次方根都是0.
(4)任何一個(gè)數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因?yàn)闆]有一個(gè)數(shù)的偶次方是一個(gè)負(fù)數(shù).
類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):
①當(dāng)n為偶數(shù)時(shí),正數(shù)a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0).
②n為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號na表示.
③負(fù)數(shù)沒有偶次方根;0的任何次方根都是零.
上面的文字語言可用下面的式子表示:
a為正數(shù):n為奇數(shù),a的n次方根有一個(gè)為na,n為偶數(shù),a的n次方根有兩個(gè)為±na.
a為負(fù)數(shù):n為奇數(shù),a的n次方根只有一個(gè)為na,n為偶數(shù),a的n次方根不存在.
零的n次方根為零,記為n0=0.
可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例.
思考
根據(jù)n次方根的性質(zhì)能否舉例說明上述幾種情況?
活動:教師提示學(xué)生對方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時(shí)巡視學(xué)生,隨機(jī)給出一個(gè)數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時(shí)糾正學(xué)生在舉例過程中的問題.
解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等.其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個(gè)名稱——根式.
根式的概念:
式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù).
如3-27中,3叫根指數(shù),-27叫被開方數(shù).
思考
nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?
活動:教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號,充分讓學(xué)生多舉實(shí)例,分組討論.教師點(diǎn)撥,注意歸納整理.
〔如3(-3)3=3-27=-3,4(-8)4=-8=8〕.
解答:根據(jù)n次方根的意義,可得:(na)n=a.
通過探究得到:n為奇數(shù),nan=a.
n為偶數(shù),nan=a=a,-a,a≥0,a<0.
因此我們得到n次方根的運(yùn)算性質(zhì):
①(na)n=a.先開方,再乘方(同次),結(jié)果為被開方數(shù).
②n為奇數(shù),nan=a.先奇次乘方,再開方(同次),結(jié)果為被開方數(shù).
n為偶數(shù),nan=a=a,-a,a≥0,a<0.先偶次乘方,再開方(同次),結(jié)果為被開方數(shù)的絕對值.
應(yīng)用示例
思路1
例求下列各式的值:
(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).
活動:求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識,關(guān)鍵是啥,搞清這些之后,再針對每一個(gè)題目仔細(xì)分析.觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過程中出現(xiàn)的問題并對癥下藥.求下列各式的值實(shí)際上是求數(shù)的方根,可按方根的運(yùn)算性質(zhì)來解,首先要搞清楚運(yùn)算順序,目的是把被開方數(shù)的符號定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號,如果是偶數(shù),開方的結(jié)果必須是非負(fù)數(shù).
解:(1)3(-8)3=-8;
(2)(-10)2=10;
(3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b).
點(diǎn)評:不注意n的奇偶性對式子nan的值的影響,是導(dǎo)致問題出現(xiàn)的一個(gè)重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會用,活用.
變式訓(xùn)練
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
點(diǎn)評:本題易錯(cuò)的是第(3)題,往往忽視a與1大小的討論,造成錯(cuò)解.
思路2
例1下列各式中正確的是()
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活動:教師提示,這是一道選擇題,本題考查n次方根的運(yùn)算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運(yùn)算性質(zhì)來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會方根運(yùn)算的實(shí)質(zhì),學(xué)生先思考哪些地方容易出錯(cuò),再回答.
解析:(1)4a4=a,考查n次方根的運(yùn)算性質(zhì),當(dāng)n為偶數(shù)時(shí),應(yīng)先寫nan=a,故A項(xiàng)錯(cuò).
(2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項(xiàng)錯(cuò).
(3)a0=1是有條件的,即a≠0,故C項(xiàng)也錯(cuò).
(4)D項(xiàng)是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,故D項(xiàng)正確.所以答案選D.
答案:D
點(diǎn)評:本題由于考查n次方根的運(yùn)算性質(zhì)與運(yùn)算順序,有時(shí)極易選錯(cuò),選四個(gè)答案的情況都會有,因此解題時(shí)千萬要細(xì)心.
例23+22+3-22=__________.
活動:讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據(jù)方根的運(yùn)算求出結(jié)果是解題的關(guān)鍵,因此將根號下面的式子化成一個(gè)完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式.正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路.
解析:因?yàn)?+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
點(diǎn)評:不難看出3-22與3+22形式上有些特點(diǎn),即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個(gè)完全平方式.
思考
上面的例2還有別的解法嗎?
活動:教師引導(dǎo),去根號常常利用完全平方公式,有時(shí)平方差公式也可,同學(xué)們觀察兩個(gè)式子的特點(diǎn),具有對稱性,再考慮并交流討論,一個(gè)是“+”,一個(gè)是“-”,去掉一層根號后,相加正好抵消.同時(shí)借助平方差,又可去掉根號,因此把兩個(gè)式子的和看成一個(gè)整體,兩邊平方即可,探討得另一種解法.
另解:利用整體思想,x=3+22+3-22,
兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
點(diǎn)評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個(gè)完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個(gè)整體利用完全平方公式和平方差公式去解.
變式訓(xùn)練
若a2-2a+1=a-1,求a的取值范圍.
解:因?yàn)閍2-2a+1=a-1,而a2-2a+1=(a-1)2=a-1=a-1,
即a-1≥0,
所以a≥1.
2023初二數(shù)學(xué)教案篇3
教學(xué)目的
通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,進(jìn)一步體會方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):
探索這些實(shí)際問題中的等量關(guān)系,由此等量關(guān)系列出方程。
2.難點(diǎn):
找出能表示整個(gè)題意的等量關(guān)系。
教學(xué)過程
一、復(fù)習(xí)
1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤等有關(guān)知識。
利潤=售價(jià)—成本;=商品利潤率
二、新授
問:小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價(jià)值48.6元的計(jì)算器,問小明爸爸前年存了多少元?
利息—利息稅=48.6
可設(shè)小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實(shí)際得到的利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例:一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標(biāo)價(jià)的80%(即售價(jià))-成本=15
若設(shè)這種服裝每件的成本是x元,那么
每件服裝的標(biāo)價(jià)為:(1+40%)x
每件服裝的實(shí)際售價(jià)為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%—x
由等量關(guān)系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習(xí)
教科書第15頁,練習(xí)1、2。
四、小結(jié)
當(dāng)運(yùn)用方程解決實(shí)際問題時(shí),首先要弄清題意,從實(shí)際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。
2023初二數(shù)學(xué)教案篇4
初二上冊數(shù)學(xué)知識點(diǎn)總結(jié):等腰三角形
一、等腰三角形的性質(zhì):
1、等腰三角形兩腰相等.
2、等腰三角形兩底角相等(等邊對等角)。
3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.
4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
5、等邊三角形的性質(zhì):
①等邊三角形三邊都相等.
②等邊三角形三個(gè)內(nèi)角都相等,都等于60°
③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).
6.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形.
②如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊).
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形.
②三個(gè)角都相等的三角形是等邊三角形.
③有一個(gè)角是60°的等腰三角形是等邊三角形.
2023初二數(shù)學(xué)教案篇5
一、讀一讀
學(xué)習(xí)目標(biāo):1、掌握“三角形內(nèi)角和定理”的證明及其簡單應(yīng)用;
2、體會思維實(shí)驗(yàn)和符號化的理性作用
二、試一試
自學(xué)指導(dǎo):
1、回憶三角形內(nèi)角和的探索方式,想一想,根據(jù)前面給出的公里和定理,你能進(jìn)行論證么?
2、已知:如右圖所示,△ABC
求證:∠A+∠B+∠C=180°
思考:延長BC到D,過點(diǎn)C作射線CE∥BA,這樣就相
當(dāng)于把∠A移到了的位置,把∠B移到的位置。
注意:這里的CD,CE稱為輔助線,輔助線通常畫成虛線
證明:作BC的延長線CD,過點(diǎn)C作射線CE∥BA,則:
3、你還有其它方式么(可參考課本239頁“議一議”小明的想法;241頁聯(lián)系拓廣4)?方法越多越好!
三、練一練
1、直角三角形的兩銳角之和是多少度?正三角形的一個(gè)內(nèi)角是多少度?請證明你的結(jié)論。
2、已知:如圖,在△ABC中,∠A=60°,∠C=70°,點(diǎn)D和點(diǎn)E分別在AB和AC上,且DE∥BC
求證:∠ADE=50°
3、如圖,在△ABC中,DE∥BC,∠DBE=30°,∠EBC=25°,求∠BDE的大小。
4、證明:四邊形的內(nèi)角和等于360°
2023初二數(shù)學(xué)教案篇6
方差
一. 教學(xué)目標(biāo):
1. 了解方差的定義和計(jì)算公式。
2. 理解方差概念的產(chǎn)生和形成的過程。
3. 會用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動大小。
二. 重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1. 重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
2. 難點(diǎn):理解方差公式
3. 難點(diǎn)的突破方法:
方差公式:S = [( - ) +( - ) +…+( - ) ]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。
(2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時(shí),僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié) 教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個(gè)數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計(jì)量。
三. 例習(xí)題的意圖分析:
1. 教材P125的討論問題的意圖:
(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計(jì)算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。
(4).客觀上反映了在解決某些實(shí)際問題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。
2. 教材P154例1的設(shè)計(jì)意圖:
(1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對方差公式的掌握。
(2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績選擇參賽隊(duì)員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。
五. 例題的分析:
教材P154例1在分析過程中應(yīng)抓住以下幾點(diǎn):
1. 題目中“整齊”的含義是什么?說明在這個(gè)問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。
2. 在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄担@個(gè)問題可以使學(xué)生明確利用方差計(jì)算步驟。
3. 方差怎樣去體現(xiàn)波動大小?
這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。
六. 隨堂練習(xí):
1. 從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農(nóng)作物的苗長的比較高?
(2)哪種農(nóng)作物的苗長得比較整齊?
2. 段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭荆l的成績比較穩(wěn)定?為什么?
測試次數(shù) 1 2 3 4 5
段巍 13 14 13 12 13
金志強(qiáng) 10 13 16 14 12
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊
2.段巍的成績比金志強(qiáng)的成績要穩(wěn)定。
七. 課后練習(xí):
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S ,所以確定 去參加比賽。
3. 甲、乙兩臺機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺機(jī)床的性能較好?
4. 小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
2023初二數(shù)學(xué)教案篇7
一、學(xué)習(xí)目標(biāo):1.完全平方公式的推導(dǎo)及其應(yīng)用.
2.完全平方公式的幾何解釋.
二、重點(diǎn)難點(diǎn):
重點(diǎn):完全平方公式的推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)、幾何解釋,靈活應(yīng)用
難點(diǎn):理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計(jì)算
三、合作學(xué)習(xí)
Ⅰ.提出問題,創(chuàng)設(shè)情境
一位老人非常喜歡孩子.每當(dāng)有孩子到他家做客時(shí),老人都要拿出糖果招待他們.來一個(gè)孩子,老人就給這個(gè)孩子一塊糖,來兩個(gè)孩子,老人就給每個(gè)孩子兩塊塘,…
(1)第一天有a個(gè)男孩去了老人家,老人一共給了這些孩子多少塊糖?
(2)第二天有b個(gè)女孩去了老人家,老人一共給了這些孩子多少塊糖?
(3)第三天這(a+b)個(gè)孩子一起去看老人,老人一共給了這些孩子多少塊糖?
(4)這些孩子第三天得到的糖果數(shù)與前兩天他們得到的糖果總數(shù)哪個(gè)多?多多少?為什么?
Ⅱ.導(dǎo)入新課
計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律?
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)這兩個(gè)數(shù)的積的二倍的2倍.
(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2
四、精講精練
例1、應(yīng)用完全平方公式計(jì)算:
(1)(4m+n)2(2)(y-)2(3)(-a-b)2(4)(b-a)2
例2、用完全平方公式計(jì)算:
(1)1022(2)992
2023初二數(shù)學(xué)教案篇8
學(xué)習(xí)目標(biāo)
1、通過運(yùn)算多項(xiàng)式乘法,來推導(dǎo)平方差公式,學(xué)生的認(rèn)識由一般法則到特殊法則的能力。
2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。
3、初步學(xué)會運(yùn)用平方差公式進(jìn)行計(jì)算。
學(xué)習(xí)重難點(diǎn)重點(diǎn)是平方差公式的推導(dǎo)及應(yīng)用。
難點(diǎn)是對公式中a,b的廣泛含義的理解及正確運(yùn)用。
自學(xué)過程設(shè)計(jì)教學(xué)過程設(shè)計(jì)
看一看
認(rèn)真閱讀教材,記住以下知識:
文字?jǐn)⑹銎椒讲罟剑篲________________
用字母表示:________________
做一做:
1、完成下列練習(xí):
①(m+n)(p+q)
②(a+b)(x-y)
③(2x+3y)(a-b)
④(a+2)(a-2)
⑤(3-x)(3+x)
⑥(2m+n)(2m-n)
想一想
你還有哪些地方不是很懂?請寫出來。
_______________________________
_______________________________
________________________________.
1.下列計(jì)算對不對?若不對,請?jiān)跈M線上寫出正確結(jié)果.
(1)(x-3)(x+3)=x2-3(),__________;
(2)(2x-3)(2x+3)=2x2-9(),_________;
(3)(-x-3)(x-3)=x2-9(),_________;
(4)(2xy-1)(2xy+1)=2xy2-1(),________.
2.(1)(3a-4b)()=9a2-16b2;(2)(4+2x)()=16-4x2;
(3)(-7-x)()=49-x2;(4)(-a-3b)(-3b+a)=_________.
3.計(jì)算:50×49=_________.
應(yīng)用探究
1.幾何解釋平方差公式
展示:邊長a的大正方形中有一個(gè)邊長為b的小正方形。
(1)請計(jì)算圖的陰影部分的面積(讓學(xué)生用正方形的面積公式計(jì)算)。
(2)小明將陰影部分拼成一個(gè)長方形,這個(gè)長方形長與寬是多少?你能表示出它的面積嗎?
圖2
2.用平方差公式計(jì)算
(1)103×93(2)59.8×60.2
拓展提高
1.閱讀題:
我們在計(jì)算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時(shí),發(fā)現(xiàn)直接運(yùn)算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個(gè)算式能用乘法公式計(jì)算.解答過程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請?jiān)囋嚳?
2.仔細(xì)觀察,探索規(guī)律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)試求25+24+23+22+2+1的值;
(2)寫出22006+22005+22004+…+2+1的個(gè)位數(shù).
堂堂清
一、選擇題
1.下列各式中,能用平方差公式計(jì)算的是()
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b).
A.(1)(2)B.(2)(3)
C.(3)(4)D.(1)(4)
2.計(jì)算(-4x-5y)(5y-4x)的結(jié)果是()
A.16x2-25y2B.25y2-16x2C.-16x2-25y2D.16x2+25y2
3.下列計(jì)算錯(cuò)誤的是()
A.(6a+1)(6a-1)=36a2-1
B.(-m-n)(m-n)=n2-m2
C.(a3-8)(-a3+8)=a9-64D.(-a2+1)(-a2-1)=a4-1
4.下列計(jì)算正確的是()
A.(a-b)2=a2-b2
B.(a-b)(b-a)=a2-b2
C.(a+b)(-a-b)=a2-b2D.(-a-b)(-a+b)=a2-b2
5.下列算式能連續(xù)兩次用平方差公式計(jì)算的是()
A.(x-y)(x2+y2)(x-y)B.(x+1)(x2-1)(x+1)
C.(x+y)(x2-y2)(x-y)D.(x+y)(x2+y2)(x-y)
二、計(jì)算:
(1)(5ab-3x)(-3x-5ab)
(2)(-y2+x)(x+y2)
教后反思本節(jié)課是運(yùn)算多項(xiàng)式乘法,來推導(dǎo)平方差公式,使學(xué)生的認(rèn)識由一般法則到特殊法則的能力,并能歸納總結(jié)出平方差公式的結(jié)構(gòu)特征,利用平方差公式來進(jìn)行運(yùn)算。